A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors

نویسندگان

  • Manhyung Han
  • Jae Hun Bang
  • Chris D. Nugent
  • Sally I. McClean
  • Sungyoung Lee
چکیده

Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the challenges with activity modeling and real-time recognition. In addition, recognizing life-logs is difficult due to the absence of an established framework which enables the use of different sources of sensor data. In this paper, we propose a smartphone-based Hierarchical Activity Recognition Framework which extends the Naïve Bayes approach for the processing of activity modeling and real-time activity recognition. The proposed algorithm demonstrates higher accuracy than the Naïve Bayes approach and also enables the recognition of a user's activities within a mobile environment. The proposed algorithm has the ability to classify fifteen activities with an average classification accuracy of 92.96%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity Recognition Using Hierarchical Hidden Markov Models on a Smartphone with 3D Accelerometer

As smartphone users have been increased, studies using mobile sensors on smartphone have been investigated in recent years. Activity recognition is one of the active research topics, which can be used for providing users the adaptive services with mobile devices. In this paper, an activity recognition system on a smartphone is proposed where the uncertain time-series acceleration signal is anal...

متن کامل

Mobeacon: An iBeacon-Assisted Smartphone-Based Real Time Activity Recognition Framework

Human activity recognition using multi-modal sensing technologies to automatically collect and classify daily activities has become an active field of research. Given the proliferation of smart and wearable devices and their greater acceptance in human lives, the need for developing real time lightweight activity recognition algorithms become a viable and urgent avenue. Although variants of onl...

متن کامل

Recognizing human activities from smartphone sensors using hierarchical continuous hidden Markov models

Human activity recognition has been gaining more and more attention from researchers in recent years, particularly with the use of widespread and commercially available devices such as smartphones. However, most of the existing works focus on discriminative classifiers while neglecting the inherent time-series and continuous characteristics of sensor data. To address this, we propose a two-stag...

متن کامل

Deep Convolutional Neural Networks for Human Activity Recognition with Smartphone Sensors

Human activity recognition (HAR) using smartphone sensors utilize time-series, multivariate data to detect activities. Time-series data have inherent local dependency characteristics. Moreover, activities tend to be hierarchical and translation invariant in nature. Consequently, convolutional neural networks (convnet) exploit these characteristics, which make it appropriate in dealing with time...

متن کامل

Human Activity Recognition using Smartphone Sensors and Statistical Classification Trees

The purpose of this investigation is to develop a system for human physical Activity Recognition using smartphone inertial sensors. The main application for this system is for the remote monitoring of Activities of Daily Living (ADLs) of elderly people, especially those in assisted living situations. The immediate goal is to remotely identify which actions are being carried out by a subject, gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014